LESSON PLAN | Discipline: Mechanical Engg. | Semester:
Third (3 rd) | Name of the Faculty:
Er Priyabrata Barik | |-------------------------------------|--|---| | Subject:
Strength of
Material | No. of days/week
class allotted:
Six (6) | Semester from Date: 15.09.22 to Date: 22.12.22
No. of Weeks: 15 | | WEEK | CLASS DAY | THEORY TOPICS | | 1 st | 1 st | Introduction of Simple Stress and Strain Types of loads. | | | 2 nd | stress, & strain (axial & tangential) | | | 3 rd | Hook's law, Young's modulus, bulk modulus | | | 4 th | modulus of rigidity, Poisson's ratio. | | | 5 th | Derive the relation between three elastic constants. | | | 6 th | Continue | | | 1 st | Principle of superposition, | | | 2 nd | stresses in composite section. | | | 3 rd | Temperature stress. | | 2 nd | 4 th | Continue | | | 5 th | Determine temperature stress in composite bar (single core) | | | 6 th | Continue | | 3 rd | 1 st | Strain energy and resilience | | | 2 nd | stress due to gradually applied and sudden applied load | | | 3 rd | Simple problems on above | | | 4 th | Simple problems on above | | | 5 th | Simple problems on above | | | 6 th | Review class | | 4 th | 1 st | Introduction of Thin Cylinder and Spherical Shell
Under Pressure | | I | | | |-----------------|-----------------|--| | | 2 nd | Definition of hoop and longitudinal stress, strain. | | | 3 rd | Derivation of hoop stress, | | | 4 th | Derivation longitudinal stress. | | | 5 th | Hoop strain, longitudinal strain and volumetric strain. | | | 6 th | Monthly test - 01 | | | 1 st | Computation of the change in length, | | | 2 nd | Computation of the diameter and volume. | | | 3 rd | Simple problems on above. | | 5 th | 4 th | Simple problems | | | 5 th | Simple problems | | | 6 th | Review class | | | 1 st | Introduction of Two-Dimensional Stress System. | | | | Determination of normal stress, | | | 2 nd | Determination of shear stress on oblique plane. | | 6 th | 3 rd | Determination of resultant stress on oblique plane. | | | 4 th | Location of principal plane | | | 5 th | computation of principal stress. | | | 6 th | Continue | | 7 th | 1 st | Location of principal plane using mohr's circle. | | | 2 nd | Continue | | | 3 rd | computation of principal stress and | | | 4 th | computation of maximum shear stress using mohr's circle. | | - | - | | | | 5 th | Numerical | |------------------|-----------------|--| | | 6 th | Monthly test- 02 | | 8 th | 1 st | Numerical | | | 2 nd | Numerical | | | 3 rd | Numerical | | | 4 th | Review class | | | 5 th | Introduction of Bending Moment and Shear Force | | | 6 th | Types of beam and load | | | 1 st | Concept of shear force and bending moment. | | 9 th | 2 nd | Shear force and bending moment diagram and its salient features. | | | 3 rd | Continue | | | 4 th | Illustration of cantilever beam under point load | | | 5 th | Illustration of cantilever beam under uniformly distribution load. | | | 6 th | Simply supported beam. | | | 1 st | Continue | | 10 th | 2 nd | Overhanging beam. | | | 3 rd | Continue | | | 4 th | Numerical | | | 5 th | Numerical | | | 6 th | Monthly test - 03 | | 11 th | 1 st | Numerical | | | 2 nd | Numerical | | | 3 rd | Numerical | | | 4 th | Numerical | |------------------|-----------------|--| | | 5 th | Review class | | | 6 th | Introduction of Theory of Simple Bending | | | 1 st | Assumption in the theory of bending. | | | 2 nd | Bending equation, | | | 3 rd | moment of resistance. | | 12 th | 4 th | Continue. | | | 5 th | Section modulus & neutral axis. | | | 6 th | Continue. | | | 1 st | Solve simple problems | | | 2 nd | Simple problems | | | 3 rd | Simple problems | | 13 th | 4 th | Simple problems | | | 5 th | Review class | | | 6 th | Combined Direct & Bending Stresses Define column. | | 14 th | 1 st | Axial load, eccentric load on column. | | | 2 nd | Direct stresses, bending stresses, maximum & minimum stresses. | | | 3 rd | Monthly Test - 04 | | | 4 th | Numerical problems on above. | | | 5 th | Bulking load computation using Euler's formula (no derivation) in columns with various end conditions. | | | 6 th | Review class. | | | 1 st | Introduction of Torsion. | |------------------|-----------------|---| | | | Assumption of pure torsion. | | | 2 nd | The torsion equation for solid subjected to pure torsion. | | 15 th | 3 rd | The torsion equation for hollow shaft subjected to pure torsion. | | | 4 th | Comparison between solid and hollow shaft subjected to pure torsion | | | 5 th | Numerical. | | | 6 th | Review class |